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Abstract

This is a measurement of the mass of the top quark using a method developed by G.
Goldstein and R.H. Dalitz. It is based on 2.0 fb−1 of data collected by the Collider Detec-
tor Facility at Fermi National Accelerator Laboratories. Di-lepton events were observed
from colliding protons with anti-protons with

√
s = 1.96 TeV in the Tevatron Collider.

A total of 145 candidate events were observed with 49 expected to be from background
when no b-Tagging was used. (64 candidate events were observed with 5 expected to be
from background when b-Tagging was used.) These events include two neutrinos which
elude detection. The method solves for the two neutrino momenta using a geometrical
construction and taking as input the measured charged lepton and jet 4-momenta. In our
analysis, we sample over a range of likely top quark masses choosing the most consistent
mass with the help of an appropriately defined likelihood function. An important dis-
tinguishing feature of this method from others is its lack of dependence on the missing
transverse energy, a quantity that is poorly measured by the experiment. This analy-
sis determines the top quark mass to be Mtop = 172.3 ± 3.4(stat.) ± 2.1(syst.) GeV/c2

(Mtop = 170.5± 3.7(stat.)± 1.7(syst.) GeV/c2 with b-tagging).

http://www-cdf.fnal.gov
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The Dalitz and Goldstein Method

1.1 Introduction

This paper will give an exposition of the Dalitz and Goldstein method[1] of measuring the mass
of the top quark in the di-lepton channel. It is based on a geometrical construction and the
leading order matrix elements for tt̄ production, t → Wb decay, and W → lν decay, which
defines a likelihood. The method has been modified to also work in the lepton plus jets channel
by Dalitz, Goldstein, and Sliwa[2][3][4][5]. A major advantage of this method is the inclusion
of both qq̄ → tt̄ and gg → tt̄ matrix elements and its lack of dependence on 6ET , a point that
is stressed by Sliwa in reference[6].

The original method was improved significantly in 1999 by Karr and Sliwa[7]. This analysis
employs a new, much improved version of the technique, a result of careful studies performed
over the past few years.

1.2 Geometrical Construction

The Dalitz and Goldstein[1] method for measuring the top quark mass in the di-lepton channel
employs a geometrical interpretation of the equations of constraint.
Those equations are:

(l+ + ν)2 = M2
W (1)

(l− + ν̄)2 = M2
W (2)

(t− l+ − b)2 = M2
ν = 0 (3)

(t̄− l− − b̄)2 = M2
ν = 0 (4)

t2 = M2
t = M2

t̄ = t̄2 (5)

−P t
x ∼ P t̄

x (6)

−P t
y ∼ P t̄

y (7)

where t, l, b, and ν are the top quark, lepton, bottom quark, and neutrino 4-momenta. MW ,
Mt, and Mν are the masses of the W boson, top quark, and neutrino. P t

x and P t
y are the x

and y components of the top and anti-top quarks’ transverse momenta. Equations 6 and 7 are
only approximate and are considered “weak” constraints while the rest are “hard” constraints.
Equations 6 and 7 are “weak” due to the possibility that the partons inside of the protons may
have some transverse momentum. If this were not the case, then both equations 6 and 7 would
be “hard” constraints.

The geometrical construction begins by rewriting equations 1 through 4 in terms of the top
and bottom quark kinematics

(~Pt − ~Pb)
2 = (Et − Eb)2 −M2

W ≡ R2
W , (8)

(~Pt − ~Pb − ~Pl+)2 = (Et − Eb − El+)2 ≡ R2
ν . (9)
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~Pt, ~Pb, and ~Pl+ are the 3-momenta for the Top, Bottom, and charged lepton; and Et, Eb, and
El+ are their corresponding energies. A second pair of equations can be written for the anti-top
quark and its decay products in exactly the same way. These equations are the equation for a
sphere in the 3-dimensional momentum space.

X2 + Y 2 = R2 (10)

The centers of these two spheres are separated by the charged lepton’s 3-momentum ~Pl+ . Fig-
ure 1 shows an example of two non-intersecting spheres that have their centers separated by
~Pl+ . Both ~Pl+ and ~Pb in this picture are fixed because they are measured quantities; however,
~Pt is not measured and free to move about. Since the two spheres in Figure 1 do not intersect,
it is not possible to draw a ~Pt vector that satisfies Eq. 8 and 9 simultaneously. Figure 2 shows
two spheres that intersect at a single point. In this case, there exists one ~Pt vector that will
satisfy both equations. This is a special case that will be discussed more in the next paragraph.
Figure 3 shows a more generic case where the two spheres intersect at more than one point.
In this case, the intersection is a circle. As long as ~Pt lies on this circle, it will satisfy both
equations.

If the lepton masses are neglected, the top quark energy will be constant on this circle with
radius r (Figure 4).

r2 =
M2

W

| ~Pl+ |
(Et − Eo) (11)

Eo = Eb − El +
M2

W

4El
(12)

E0 is the lowest possible energy for the top quark given the kinematics of the event. If Et is
equal to E0, this corresponds to the special case mentioned above. If Et is less than to E0, the
two spheres will not intersect and therefore give no solution.

Given a different top quark energy Et, a different pair of spheres can be constructed. For
each pair of spheres that intersect, a new circle is created. The top quark energy will increase
in the direction of ~Pl+ . These circles form the surface of a paraboloid (Figure 5). While the
top quark energy is constant on these circles, the top quark mass , Mt, is not. However, if
the mass is fixed the top quark 3-momentum vector will be confined to a conic section of the
paraboloid which happens to be, out of the four possible conic section types, an ellipse. The
orientation and eccentricity of the ellipse will depend on the assumed mass and the 4-momenta
of the leptons and Bottom Quarks (Figure 6). A similar ellipse can be constructed in the same
way for the anti-top quark.

Once both ellipses are constructed, they are projected into the transverse plane of the
detector, one of which is reflected about the origin. Using the “weak” constraints, Eq. 6
and Eq. 7, each pair of points, one from each ellipse, will correspond to a possible solution
consistent with the assumed top mass and the measured lepton and jet momenta. If these final
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Figure 1: The two spheres of radii RW and Rν , whose centers are separated by ~Pt, but do not
intersect.

constraints were “hard”, then only the points of intersection of the two ellipses would need to be
considered as possible solutions. It is because they are “weak” that every pair of points needs
to be considered. Given a pair of points from the projection of the two ellipses, the transverse
momentum, Pttt̄, of the top-anti-top system can be calculated. Each pair of points is assigned a
likelihood factor, P (Pttt̄), from the Pttt̄ spectrum. The expected shape of the Pttt̄ distribution
is calculated from Monte Carlo simulation. If a different top mass is assumed, a different pair
of ellipses will be created whose projections into the x-y plane will give another set of possible
solutions.

1.3 The Likelihood

To determine the most likely mass of the top quark, a probability distribution is constructed
for each combination of leptons and jets in an event. Given an assumed top quark mass, a
likelihood value, Li, for all pairs of points on the families of ellipses are projected onto the
Mt-axis of this distribution. The most likely top quark mass corresponds to the peak of this
distribution. The likelihood values, Li, are a product of six probability factors.
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Figure 2: The two spheres of radii RW and Rν , which intersect at a point. O is the point where
Et − E0 = 0, the minimum energy allowed for the top quark as determined by the kinematics
of the event.

Li = P (Ptt̄)×G(b)×G(b̄)× P (x1, x2)× P (l+)× P (l−) (13)

P (Pttt̄) is the factor related to the transverse momentum of the top-anti-top system
G(b) and G(b̄) are the factors related to Jet Energy Smearing

P (x1, x2) is the factor related to the leading order matrix element for the tt̄ production.
P (l+) and P (l−) are the factors resulting from V-A Calculations with the matrix elements for

the t→ Wb and W → lν decays

i. P (Pttt̄)
Given a pair of points from the projection of the two ellipses, the transverse momentum,

Pttt̄, of the top-anti-top system can be calculated. Each pair of points is weighted by a likeli-
hood factor, P (Pttt̄), from the Pttt̄ spectrum. The expected shape of the Pttt̄ distribution is
calculated from Monte Carlo simulation. If a different top mass is assumed, a different pair of
ellipses will be created whose projections into the x-y plane will give another set of possible
solutions.
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Figure 3: The two spheres of radii RW and Rν , showing a circle of intersection.

ii. P (x1, x2)
A relative likelihood factor is assigned that describes the level of agreement between the

Feynman-x values, x1 and x2 , that are calculated from the event and those predicted by theory,
i.e. the dependence of the leading order matrix element on the structure functions for the event,

Px1,x2 =

∑
i=qq,gg Fi(x1)Fi(x2)dσ

dt̂
(ŝ, t̂)i∑

i=qq,gg
dσ
dt̂

(ŝ, t̂)i
(14)

x1,2 = (Et + Et̄ ± (tL + t̄L))/2P (15)

ŝ = x1x2s (16)

t̂ = M2
t − x1

√
s(Et − tL) (17)

where i labels the qq̄ and gg processes; Fi are the structure functions; ŝ is the parton-parton
center-of-mass energy; t̂ is the momentum transfer of the top-anti-top quark production subpro-
cess; P is the proton momentum; s is the square of the energy in the proton-anti-proton system;
and tL is the longitudinal momentum of the top quark in the lab frame of the proton-anti-proton
system.

iii. P (l+) and P (l−)
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Figure 4: The two spheres of radii RW and Rν showing a circle of intersection with constant
energy Et.

For each point a likelihood factor is calculated to describe the agreement of the charged lep-
ton energies calculated in the top quark rest frame with the values predicted by V-A calculations
of the t→ W + b and W → l + ν decays.

dP (El) = (24/M2
t )El(1− 2El/Mt)dEl (18)

iv. G(b) and G(b̄)
Since the b-jet and b-quark measured energies have large errors, the true parton energies

can differ from the measured values. A range of energies is defined which is centered about the
measured energy of each of the jets in an event. The range is chosen to be 3σ, where σ is the
width of the jet energy resolution distribution. A finite number of jet energy points is chosen
within the 3 signa range, and a probability, G(b), is assigned to each point. Points that corre-
spond to b-jet energies that deviate from the measured value will be downgraded by a Gaussian
probability factor giving them a lower probability than ones closer to the measured value. This
smearing of the jet energies will give a family of ellipses for each jet. Each combination from an
event with different jets will have its own pair of sigmas, one for each jet in the combination.
The number of discrete points is set to the same value for all jets even though their sigmas
will vary. In order to compensate for this, the likelihoods are first multiplied by the product of
these sigmas when comparing the likelihood of one combination to another.
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Figure 5: The two spheres of radii RW and Rν showing a circle of intersection with constant
energy Et. Also seen here is a second circle of constant Et resulting from the intersection of
two other spheres (not drawn). Both circles begin to form the paraboloid surface.

Pairing together all the combinations of ellipses from each family will create a 2-dimensional
grid where the axes are labeled by the indeces of the smeared jet energy points. Each point on
the grid will have a value which is the Li that corresponds to smeared jets momenta, the given
lepton momenta, and assumed top mass. There will be a different grid for each assumed top
mass. Altogether, this will create a 3-dimensional space where the third axis is the assumed
top mass. Each point in this space will have a value that comes from the sum of all the pairs
of points on the pair of ellipses that correspond to the given assumed top mass and the two
smeared jet energy values. The ellipses will vary in size. Geometrically speaking, each ellipse
has an infinite number of points, but in the world of computers an infinite number of points
can not be summed. Thus, a discrete set of points needs to be defined for each ellipse. This can
be done in two ways. The first is to choose the number of points for all ellipses and allow the
distance between points to be variable. The second way is to hold the distance between each
point on an ellipse constant, so the number of points in the sum will be its circumference divided
by the pre-defined distance between points. The first way has a significant problem. The most
important points in the sum over the pairs of points on the ellipses are the intersection points
of the two ellipses. If the distance between points is allowed to be variable, and an ellipse is
large, it becomes more likely that the intersection point and the points around the intersections
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Figure 6: The two spheres of radii RW and Rν showing a circle of intersection with constant
energy Et. Assuming a constant Mt confines Pt to a conic section of the paraboloid which is
an ellipse.

will be missed. The advantage here is that the number of points that are being considered can
be kept small and thus reduces the amount of CPU time needed to do the analysis. This was
the method used by Karr and Sliwa[7] in their measurement in 1999. The second method has
two possible drawbacks. If an ellipse is small, it will have very few points, possibly as little
as one point, and if an ellipse if very large, it will take a significant amount of CPU time to
compute the sum. However, there should only be small ellipses around the minimum allowed
assumed top mass, and modern computers can compute these sums in a reasonable amount of
time. The second method is superior in that it will guarantee integration near the intersection
points given a small enough choice of the spacing. As newer and faster computers are created,
a smaller spacing can be used which should help to improve the integration over the ellipses
and thus improve this method of measuring the top quark mass. This is one of the important
changes made in this measurement from the earlier measurement. Summing over the assumed
top mass axis of this space will reduce it back to a 2-dimensional grid with the smeared jet
energies as the remaining axes; however, now the value at each point is a total likelihood. The
point on the grid with the greatest total likelihood will be chosen as the most probable solution
given this combination of leptons and jets.
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It should be noted that this is another important difference in methodology between this
analysis and the Run 1 analysis done by Karr and Sliwa[7]. In that analysis, the 2-D smeared
jet energy grid was integrated over to get the total likelihood for the event instead of picking
the best combination out of all possible smeared jet combinations.

This total likelihood and its corresponding probability distribution will be compared to
other combinations of leptons and jets (Bottom Quarks) from the same event where the greater
one is favored.

1.4 MET Probability

There is an additional probability factor calculated for each combination based on the measured
missing transverse energy. During the analysis of each combination, the energy and momentum
of the neutrinos are obtained. The difference between the two missing neutrino x and y momenta
in the transverse plane and the missing transverse energy x and y components are compared
and assigned a probability based on the shape of the reconstructed 6ET x and y components
from MC events. This factor is only used to help choose between combinations, it is not used
to calculate the mass probability distribution.

1.5 The Joint Likelihood

Once a combination from an event is chosen via the method described above, and all events
have been analyzed, a joint likelihood is created. The joint likelihood is the product of the
probability distributions from the chosen combinations from each event. Since the true top
mass for all of the events is the same, the joint probability distribution reveals where all the
events are most consistent in Mt, which should point toward the true mass. The shape of
the probability distribution for each event will not necessarily be the same. Some will be
asymmetrical and some may have more than one peak. Choosing the mean or the peak value
as the top mass for an individual event may include biases from the shape of the distribution.
By taking the product of the event distributions, the joint distribution becomes more Gaussian
in shape. Multiple peaks and asymmetries in the individual events are eliminated in the joint
distribution as are the possible biases that these characteristics may produce. The arithmetic
mean of the joint distribution is the top quark mass, the most likely value of the top quark
Mass consistent with all of the events in the sample.

1.6 Additional Ways to Choose Combinations

Aside from simply multiplying the most likely combinations together, there are three additional
ways of choosing which combinations from an event are used. The method described up to this
point is referred to as the ”Likelihood” method as it just picks according to the likelihood. The
second method involves first choosing the favored combo by likelihood, then searching for its
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”twin” where the lepton and jet assignment is switched. Then both of the mass distributions are
added together and that combined distribution along with similarly constructed distributions
from other events are used to form the joint probability distribution. This method is dubbed
the ”Likelihood Added” method. The third way starts by finding the two combinations in an
event that involved the two jets with the highest transverse momentum, a.k.a. the two leading
jets. Only these two combinations are considered and the one with the highest likelihood is
chosen as the favorite combination. This method is called the ”2 Leading Jets” method, or
2LJ for short. The final way is to start with the two combinations with the two leading jets
and simply add their mass distributions together; the likelihood isn’t considered except that
at least one of the two combinations has to have a non-zero likelihood. This method is known
as the ”2LJ Added” method. Of all of these methodologies, the one that results in the lowest
combined statistical and systematic errors will be used to make the measurement. That method
turned out to be the Likelihood Added method and all of the plots and figures shown here will
be from the results of that method. Additionally, b-Tagging of the jets was used to help reduce
the various backgrounds that plague the di-lepton channel. Both analyses, with and without
b-Tagging, will be shown in parallel.

1.7 Backgrounds and MC Generators

The Backgrounds that are expected in the di-leptomn channel are Drell-Yan (Zγ∗ → ττ and
Zγ∗ → ee/µµ), Diboson (WW , WZ, and ZZ → ll), Wγ → ll(without b-Tagging only), and
fake evetns. The Drell-Yan and Diboson samples were generated with Pythia Monte Carlo, the
Wγ sample was generated with Baur Monte Carlo, and the fake sample were taken from the
real data stream where a jet has been misidentified as a lepton. The signal MC evetns were
also generated with Pythia. Table 1 shows a breakdown of the observed number of events by
number of b-Tags and lepton pairing. Tables 2 and 3 show the number of events for each each
type of background and the signal that are expecte in the real data.

CDF Run II Preliminary (2.0fb−1)
# b-Tags ee µµ eµ ll

n = 0 21 18 42 81
n = 1 5 16 24 45
n = 2 4 8 7 19
Events Found in Data (n > 1) 9 24 31 64
Events Found in Data (n > 0) 30 42 73 145

Table 1: Breakdown of the expected number of events by number of b-Tags and lepton pair
type.
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CDF Run II Preliminary (2.0fb−1)
Source Number of Events

Fakes 21.75 ± 6.33
DY → ee + µµ 12.78 ± 2.17
WW 6.81 ± 1.17
DY → ττ 5.26 ± 1.02
WZ 1.59 ± 0.26
ZZ 1.09 ± 0.85
Wγ 0.17 ± 0.18
Total Background 49.45 ± 7.83
tt̄ (σ = 6.7 pb) 93.86 ± 7.14
Total SM Expectation 143.31 ± 13.09

Events Found in Data 145

Table 2: Expected number of events for signal and background in the di-lepton channel for
2.0fb−1 with b-Tagging

CDF Run II Preliminary (2.0fb−1)
Source Number of Events

Fakes 2.37 ± 0.69
DY → ee + µµ 0.84 ± 0.14
WW 0.23 ± 0.04
DY → ττ 1.04 ± 0.20
WZ 0.04 ± 0.01
ZZ 0.09 ± 0.07
Total Background 4.61 ± 0.74
tt̄ (σ = 6.7 pb) 54.66 ± 4.16
Total SM Expectation 59.27 ± 4.22

Events Observed in Data 64

Table 3: Expected number of events for signal and background in the di-lepton channel for
2.0fb−1
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1.8 The Construction of the Pseudo-Experiments

The real data and the Monte Carlo data are treated in exactly the same way in every detail
of this analysis except for the method of constructing the joint likelihood. When analyzing
real data, the likelihood distributions from all of the candidate events take part in the product
that forms the Joint Likelihood. When analyzing the Monte Carlo data, all of the events that
pass the cuts and have a solution are put into a pool of events. Next, events are randomly
selected from the pool and their likelihood distributions are multiplied together to produce the
joint likelihood, which forms one pseudo-experiment. The number of events selected from the
pool to form one pseudo-experiment depends on the number of candidate events expected in
the real data. The number of events is randomly generated based on a Poisson distribution
whose mean is the number of candidate events. Care is taken to not allow an event to appear
more than once in the same pseudo-experiment; however, all events in the pool are available
to every pseudo-experiment. The mean and RMS from each pseudo-experiment are used to
calculate the delta and the pull. The mean, delta, pull, and RMS are each put into histograms
to produce their own distributions.

1.9 The RMS Correction

When building the pseudo-experiments using the joint likelihood method described above, it
becomes necessary to make a correction to the RMS in order to relate it to the errors. If a simple
distribution populated by the means of the events in a pseudo-experiment was used to make
the measurement of the mass, the error on that measurement would be related to the RMS of
the distribution by 1/

√
N . This is, however, not the case for a joint likelihood distribution. A

joint likelihood distribution is too narrow and a correction factor is needed.
In order to explain how the correction factor is calculated, a simple model is needed. The

model is a box filled with cards, and on each card is a number. The number of cards in the
box is N . The sum of all the numbers on the cards is Sbox, the average of all the numbers is
Abox and the standard deviation of the numbers in the box is σbox. Now, n cards are drawn
from the box at random without replacement. The expectation value for the sum of the draws,
SEVdraw, is n ∗ Abox and the standard error on the sum of the draws from the box is

√
n ∗ σbox.

The expectation value for the average of the draws, AEVdraw, is SEVdraw/n which is simply Abox and
the standard error for the average of the draws is

√
n ∗ σbox/n which simplifies to σbox/

√
n.

The pool of events in this analysis is very similar to the box of cards. Each event is a card
and the number on the card is the mean of the distribution that corresponds to the event. All of
the same statistics that applied to the box of cards will apply to the pool of events in exactly the
same way. However, in this analysis, the average is not taken, but instead a joint distribution
is made. While at first glance this seems to be very different, making a joint distribution out of
the individual mass distributions for each event is like taking the average of the numbers on the
cards. So, the standard error for a joint distribution should be similar to that of the random
draws from a box and the RMS of a joint distribution is related to that error.
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RMSJD ∝ σpool/
√
n (19)

If all possible combinations of n events were drawn from the pool and the mean of each
sample was put into a histogram, that histogram would be a total probability distribution. It
would be normal in shape even if the parent distribution is not. Its mean would be similar to
the mean of the parent distribution and its width would be the error on the mean of the sample
distributions. Since the number of possible combinations is an extremely large number, it is
not practical to compute every possible combination. Instead, it is sufficient to draw n events
at random from the pool X number of times as long as X is large. When this is done, the
resulting histogram will not be a complete total probability histogram, however its mean and
width, σXPE, will be the same as if all possible combinations were sampled. Since the widths
of these distributions are the same, σXPE describes the error on the PEs.

σXPE ≈ σpool/
√
n (20)

It follows that

RMSJD ∝ σXPE (21)

This gives the correction factor, Crms, to the RMS of the joint distributions.

Crms = σXPE/RMSJD (22)

The corrected width will be

RMScorr = Crms ×RMSraw (23)

where RMScorr and RMSraw are the corrected and uncorrected widths of the individual joint
distributions of each PE.

Figures 7 and 8 show that CRMS is independent of the top mass.
The value of Crms has a dependence, discussed in more detail in Section 1.11, on the shapes

of the likelihood distributions from the events.
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Figure 7: RMS correction fac-
tor as a function of top mass
for signal-only events.

Figure 8: RMS correction fac-
tor as a function of top mass for
signal and background events.
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1.10 The Mapping Function

Analyses of a range of top mass MC samples are used to study the correlation between the
generated and reconstructed mass. Given the mean distribution for each mass MC sample, a
plot of reconstructed mass as a function of MC mass is made. While it is possible to fit various
shapes to the points, a line does the job very well. That fit is the mapping function that will
be used to make the final correction to the measurement.

To begin to test the method, parton information from the MC generator level objects are
fed into it. This will test the method to see how well it does with the best possible data.
Ideally, given that actual 4-momenta of the leptons and b-quarks are being used instead of the
reconstructed leptons and jets, if a mass MC sample with Mt of 175 GeV is given to the method,
it should return the same mass as its answer. After each of the different mass MC samples are
analyzed in this way, the mapping function should come out with a slope of approximately one.
Figure 9 shows these mapping function. It is important to note that the event selection was
still done on the reconstructed quantities. After the events were selected, only then were the
generator level quantities used.

The next step is to use detector level quantities as the input to the analysis. This data will
be fully simulated to appear as though it came from the detector, however it will only include
tt̄ events. It will be more realistic than the generator level data, but will still be more idealistic
than real data. Figure 10 shows the resulting mapping functions.

The final step is to add in events that were simulated to look like the various types of
background that are expect in the data stream. While this data is simulated, it should look
like the real data. Applying the mapping function to the mean of the joint distribution will
give the corrected mass of the top quark. The slope of the mapping function is also used to
make one of two corrections to the width of the joint distribution to calculate the statistical
error. Figure 11 shows the two mapping functions that were used in this analysis. Equations 24
through 31 shows the 8 mapping functions that correspond to the 4 methods of choosing the
favored combination.

M raw
t = 0.665×M corr

t + 50.02 (Likelihood Only) (24)

M raw
t = 0.635×M corr

t + 53.95 (Likelihood Added) (25)

M raw
t = 0.654×M corr

t + 52.41 (2 Leading Jets) (26)

M raw
t = 0.627×M corr

t + 55.85 (2 Leading Jets Added) (27)

M raw
t = 0.750×M corr

t + 36.364 (Likelihood Only w/ b-Tagging) (28)

M raw
t = 0.747×M corr

t + 35.592 (Likelihood Added w/ b-Tagging) (29)

M raw
t = 0.752×M corr

t + 36.490 (2 Leading Jets w/ b-Tagging) (30)

M raw
t = 0.754×M corr

t + 34.960 (2 Leading Jets Added w/ b-Tagging) (31)

CDF Run II Preliminary (2.0fb−1)
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Figure 9: Mapping function from signal-only MC generator level objects.
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Figure 10: Mapping function from signal-only MC detector level objects.
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Figure 11: Mapping function from signal and background MC detector level objects.
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1.11 Statistical Error

The statistical error on the measurement of the top quark mass is expected to be related to the
width of the joint distribution created by the product of the mass distributions from the real
data events. In addition to the correction to the RMS as described in Section 1.9, the width
of the joint distribution needs to be corrected using the mapping function for the top mass
correction. This correction is simply the slope of the mapping function, mmap. The statistical
error on the measurement of the top quark mass, σcorrstat is related to the raw width of the joint
distribution, σrawJD by:

σcorrstat = Crms × σrawJD /mmap (32)

where Crms is the RMS correction factor. The slopes and RMS correction factors are listed in
Table 4.

Combination Choice Slope RMS Correction

without b-Tagging
Likelihood Only 0.665 3.66
Likelihood Added 0.635 3.01
2 Leading Jets 0.654 3.61
2 Leading Jets Added 0.627 3.01

with b-Tagging
Likelihood Only 0.750 2.77
Likelihood Added 0.747 2.27
2 Leading Jets 0.752 2.73
2 Leading Jets Added 0.754 2.22

Table 4: Correction factors to the width of the top mass joint distribution.

Figure 12 shows all of the correction factors from each data sample, and each method of
choosing a combination from an event. The value of the correction factor appears to be related
to the shape of the individual event probability distributions and the variation of the means of
the individual events. The probability distributions that result from the truth table information
tend to be much more symmetrical and smoother, somewhat more Gaussian in shape, than
events that use the reconstructed quantities. Additionally, the spread of the means of a given
sample is lower when using the truth table than the reconstructed quantities. Together, these
effects create the need for a larger correction factor. Its important to note that no matter which
type of data is used, the correction factors do not show a significant dependence on the mass
of the top quark (See Figures 7 and 8).

Figure 13 shows the distributions of errors that can be expected from each of the strategies
of combining jets with leptons after corrections in this analysis based on the corrected widths
of individual PEs. These distributions are based on MC data with Mt set to 175 GeV.
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Figure 12: The various correction factors to the RMS by input sample and methodology.
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Figure 13: Distributions of corrected widths from the PEs for the Likelihood Added method
with b-Tagging
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1.12 Sanity Checks

Before it is time to analyze the real data, it is important to have a closer look at how the
method affects various variables. If a variable from the signal and background MC data does
not match well with the variable in the real data, this would suggest that there is a problem in
the method or that the variable is not being modeled well in the MC. The variables of interest
are shown in Figures 15 through 18 and include such things like the Pt, η, and φ for each of
the top quarks, the tt̄ -system, and each of the jets and leptons. Figures 15 through 18 show
the variables most important to this analysis.

1.13 Systematic Errors

There are nine sources of systematic error that are considered in this analysis. The dominate
source comes for the jet energy corrections. One of the strong points of this method is that
the Jet Energy Scale systematic uncertanty is small as compared to other analyses, which gives
the lowest total systematic uncertanty of any analysis done in the di-lepton channel at CDF
and DØ given a comparable dataset. Many of the remaining uncertanties, those with a value
of 0.33 GeV and 0.42 GeV, showed an insignificant shift when compared to the MC statistical
error. In these cases, the value quoted was the limiting MC statistical error. Table 5 shows the
nine sources of systematic error and thier values.

CDF Run II Preliminary (2.0fb−1)
Likelihood Added

Source Without b-Tagging With b-Tagging

Jet Energy Scale ± 1.42 GeV ± 0.97 GeV
PDF ± 0.74 GeV ± 0.31 GeV
ISR/FSR ± 0.46 GeV ± 0.42 GeV
MC Generator ± 0.33 GeV ± 0.42 GeV
Background ± 0.35 GeV ± 0.42 GeV
b-Jet Energy Scale ± 0.33 GeV ± 0.42 GeV
Lepton PT ± 0.33 GeV ± 0.42 GeV
Pile-up ± 0.93 GeV ± 0.72 GeV
Color Reconnection ± 0.41 GeV ± 0.54 GeV

Total Systematic Uncertainty ± 2.06 GeV ± 1.65 GeV

Table 5: The systematic uncertainties in the di-lepton channel.
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Figure 14: The Pt, η, and φ for the leptons in both the MC data and the real data.

Figure 15: The Pt, η, and φ for the jets in both the MC data and the real data.
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Figure 16: The Pt, η, and φ for the top quarks in both the MC data and the real data.

Figure 17: The Pt, rapidity, and φ for the top-anti-top quark system in both the MC data and
the real data.
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Figure 18: The energy, φ, energy in the x-direction, and energy in the y-direction for the 6ET in
both the MC data and the real data.
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1.14 Results

The Dalitz-Goldstein top mass fitting technique has been applied to the di-lepton events in
Run II of the CDF experiment and the top quark mass has been determined to be:

Mtop = 172.3± 3.4(stat.)± 2.1(syst.)GeV/c2. (33)

Mtop = 170.5± 3.7(stat.)± 1.7(syst.)GeV/c2. (34)

Table 6 shows the uncorrected (raw) results for each of the four ways of choosing a combi-
nation from an event with and without b-tagging. Using Eqs. 24 through 31, the raw masses
can be corrected. To correct the raw RMSs, Eq. 32 and the values from Table 4 were used.
Table 7 shows the fully corrected results.

Method Mass Statistical Error
without b-tagging

Likelihood Only 163.6 ±0.76
Likelihood Added 163.3 ±0.72
2 Leading Jets 162.7 ±1.25
2 Leading Jets Added 162.8 ±1.04

with b-tagging
Likelihood Only 164.4 ±1.28
Likelihood Added 163.0 ±1.23
2 Leading Jets 164.4 ±1.24
2 Leading Jets Added 162.9 ±1.20

Table 6: Results without any corrections. (Raw)

Method Mass Statistical (expected SE) Systematic Errors in Quad.
without b-tagging

Likelihood Only 170.7 ±4.20 (4.61) ±1.97 ±4.64
Likelihood Added 172.3 ±3.41 (4.31) ±2.06 ±3.99
2 Leading Jets 168.8 ±6.88 (4.59) ±2.07 ±7.19
2 Leading Jets Added 170.3 ±5.00 (4.44) ±1.99 ±5.38

with b-tagging
Likelihood Only 170.7 ±4.73 (4.36) ±2.06 ±5.16
Likelihood Added 170.5 ±3.74 (3.87) ±1.65 ±4.09
2 Leading Jets 170.1 ±4.50 (4.78) ±2.43 ±5.12
2 Leading Jets Added 169.7 ±3.54 (4.40) ±1.69 ±3.92

Table 7: Final results with corrections.

The results shown in Eqs. 33 and 34 have been chosen to be the the main results from this
analysis based on the facts that they use all jets in an event and consistently have low systematic
errors. They are therefore considered to be the best measurements from this method.
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